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Introduction

The COVID-19 pandemic has taken the United States by storm, appearing to worsen more and
more every day with the end still very far from sight. Over the past few months, organizations,
researchers, healthcare professionals, and our government have collected and made available large
amounts of data on everything from the number of hospital beds per state to every policy response
enacted in the state of New York.8 Pinpointing which populations are most susceptible to the
virus, which underlying factors cause the greatest variance, and how all of our actions and societal
structures may affect each other is essential to help us end the pandemic and better prepare our
global community to prevent future ones. However, with so many variables at hand, how can we
identify the ones that truly matter? This is where PCA, or Principle Component Analysis, comes
in.

With the growing power of technology to compute and store vast amounts of information, it
feels as if there is so much to analyze and parse. However, having too many dimensions to data
can be more detrimental than beneficial — the COVID-19 pandemic data being an example of that.
High-dimensional data can slow down algorithms and be ultimately more distracting than intended.

Principal component analysis (PCA) is a key tool to reduce the dimensionality of data while
maximizing its original variance. Applied as a preliminary step in a diverse array of fields from
economics to the life sciences to study how a large number of variables affect target populations,
PCA is primarily employed to remove unnecessary or distracting variables to help researchers focus
on the variables that play the most important roles in a given issue. It can highlight the relative
importance of each variable in determining the distribution and clustering of similar populations.4

In this paper, we will first explore the process of PCA through an example subset of US Census
Data, diving into statistical context and linear algebra background as necessary. Then, we will discuss
the different ways in which PCA achieves dimensionality reduction before diving into applications
of PCA to the current COVID-19 pandemic. To conclude the paper, we hope to emphasize the
importance and limitations of PCA and its power in serving as an excellent data analysis tool.

Statistical Context

Before we jump into PCA, let us cover a few key principles of statistical analysis. Generally
speaking, we want to analyze how a single variable changes for a set of objects. Let us suppose that
we are interested in seeing how the average income per household, represented by the single variable
Q, varies over all of the countries in the world. However, this Q could represent any variable we
would like to measure for a given target population. In an ideal world, we would have an average
income per household for each of the countries in the world, the data for the entire population.
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Accordingly, if we wanted to find the average income per household worldwide, we would take the
sum of the average income per household for each country and divide it by the number of countries.
This value, denoted by µQ, is our population mean

Population Mean

µQ =
Q1 +Q2 + ...+Qn

n

The population mean is useful to calculate in that it helps us identify the center of the distribution
of our data. This will become important in our PCA when we want to transform our data so that
the center of the data is at the origin for ease of use for our following linear transformations and
change-of-bases.

To center the data around the population mean, we can subtract each of the objects in the set
we are analyzing by the population mean for that variable to find the mean-deviation form.5

Mean-Deviation Form [
Q1 − µQ . . . Qn − µQ

]
Suppose we also wanted to quantify how the data is spread around the mean, the variance of

average income per household per country. To find variance, we calculate the average of the squared
differences of each country’s average income per household and the population mean. The differences
are squared to ensure that all measurements are positive and measurements from one side of the
mean cannot cancel out those from the other side.

Variance

V ar =
Σ(x− µ)2

n

In our scenario, since each country’s data point for average income per household is represented
by Qi, for i such that 1 ≤ i ≤ n, the population variance would be

Population Variance

V ar(Q) =
Σ(Qi − µ)2

n

Interestingly, since the variance is calculated from squared differences, the variance is always
in units2. As the variance is often used in statistical calculations to determine how spread apart
objects represented by datapoints are for a particular measurement, we can take the square root of
the variance to find the standard deviation of the data.

Unfortunately, we often cannot obtain all of the data for a given population and must use a
smaller subset of data, referred to as a sample population. In our example, this is analogous
to not being able to collect the average income per household for all countries. As the number of
data points in a sample population increases, the statistical calculations on the sample population
increase in similarity to those of the population. Since the sample is an estimate of the population
or actual intended target of study, there are small changes we have to make to calculate the variance
of the sample population.

The sample mean, represented by x̄, is calculated by taking the average of all of the data points
in the sample.
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Sample Mean
For a sample of size n,

x̄ =
Q1 + ...+Qn

n

It turns out that the sample mean is always an underestimate of the population mean due to the
way in which the sample mean is calculated as a subset of the population mean.3 To account for
this underestimation, the sample variance is calculated as follows:

Sample Variance

V ar(Q) =
Σ(x− x̄)2

n− 1

What if we wanted to see not only how one variable varies among a population, but multiple
variables and if there exists some relationship between such variables? Suppose we add another
variable, P , representing the percent with health insurance coverage in a country for all countries
in the world. We can then create a 2 × n matrix containing the sample data (with n samples) for
Q,P to be: [

Q1 Q2 ... Qn
P1 P2 ... Pn

]
To capture and categorize the relationship between Q,P , we can calculate the covariance of

Q,P , by evaluating the sample covariance, Cov(Q,P ).

Sample Covariance

Cov(Q,P ) =
Σ(Qi − x̄Q)(Pi − x̄P )

n− 1

When the covariance is positive, this indicates that as Q and P are positively correlated.
Thus, as Q increases, P increases. When the covariance is zero, Q and P have no correlation. And
when the covariance is negative, Q and P are negatively correlated. Hence, when Q increases, P
decreases, and vice versa.

Finally, we can represent the variances and covariances between all of the variables measured
in a matrix through the sample covariance matrix, S. Continuing our example with Q,P , our
covariance matrix would be a 2× 2 matrix since we only have two variables, Q,P , such that:[

Cov(Q,Q) Cov(Q,P )
Cov(P,Q) Cov(P, P )

]
=

[
V ar(Q) Cov(Q,P )
Cov(P,Q) V ar(P )

]
Cov(Q,P ) = Cov(P,Q)

To describe the covariance matrix generally for any set of m variables and n samples, with our
m× n matrix B containing the sample data in mean-deviation form with variables as rows,

B =

 A1 − x̄A A2 − x̄A . . . An − x̄A
...

...
. . .

M1 − x̄M M2 − x̄M . . . Mn − x̄M


our covariance matrix S will be defined as:

3



Covariance Matrix

S =
1

n− 1
BBT

Since the covariance matrix should represent the relationships between all of the variables, its
number of rows and columns should equal the number of variables. Thus, taking a starting matrix
with different samples as columns and distinct variables as rows, we can obtain a matrix with such
dimensions by multiplying our starting matrix by its transpose. If we expand our definition of the
covariance matrix with an example matrix B, we can see why we need to multiply B by its transpose.

S =
1

n− 1

 A1 − x̄A A2 − x̄A . . . An − x̄A
...

...
. . .

M1 − x̄M M2 − x̄M . . . Mn − x̄M



A1 − x̄A . . . M1 − x̄M
A2 − x̄A . . . M2 − x̄M

...
. . .

...
An − x̄A . . . Mn − x̄M



=

 V ar(A) . . . Cov(A,M)
...

. . .
...

Cov(M,A) . . . V ar(M)


We will further explore how the variances and covariances are represented in the covariance

matrix in the following example.

Example

Suppose we have three states, x1, x2, x3, representing Arkansas, California, and Colorado, respec-
tively. Using data collected from the US Census Bureau1, we are measuring four variables—percent
of population with no health insurance coverage, percent paid below poverty level, percent of house-
holds where grandparents are primary caregivers, percent female population—on which we measure
three characteristics. Our datapoints representing each of the three states, our observation vectors
are as follows:

x1 =


9.0
17.6

0.0127
0.504

 , x2 =


8.5
14.3

0.00651
0.498

 , x3 =


8.1
10.9

0.00605
0.478

 ,
Problem: Find the sample mean, mean-deviation form, and construct the B matrix and the

sample covariance matrix.
Solution: First, to find the sample mean:

M =
1

3
(


9.0
17.6

0.0127
0.504

+


8.5
14.3

0.00651
0.498

+


8.1
10.9

0.00605
0.478

) =
1

3
(


25.6
42.8

0.02526
1.48

) =


8.53
14.27

0.00842
0.493


Then, to find the mean-deviation form, let us subtract the sample mean from each observation
vector.

4



x̂1 =


0.47
3.33

0.00428
0.011

 , x̂2 =


−0.03
0.03

−0.00191
0.005

 , x̂3 =


−0.43
−3.37
−0.00237
−0.014


Our B matrix would then be as follows:

0.47 −0.03 −0.43
3.33 0.03 −3.37

0.00428 −0.00191 −0.00237
0.011 0.005 .− 0.014


To construct our sample covariance matrix,

S =
1

2


0.47 −0.03 −0.43
3.33 0.03 −3.37

0.00428 −0.00191 −0.00237
0.011 0.005 −0.014


 0.47 3.33 0.00428 0.011
−0.03 0.03 −0.00191 0.005
−0.43 −3.37 −0.00237 −0.014



=
1

2


0.4067 3.0133 0.003088 0.01104
3.0133 22.4467 0.022182 0.08396

0.003088 0.022182 0.0000275834 0.00007071
0.01104 0.08396 0.00007071 0.000342

 =


0.20335 1.50665 0.001544 0.00552
1.50665 11.22335 0.011091 0.04198
0.001544 0.011091 0.0000137917 0.000035355
0.00552 0.04198 0.000035355 0.000171


From our sample covariance matrix, we can see that the entry S1,1 is

S1,1 =
1

2
((9.0–8.53)2 + (8.5–8.53)2 + (8.1–8.53)2 = 0.20335

And this is exactly the variance of what we declared as the first variable we measured on our
observation vectors. And then, if we look at the S2,1 entry

S2,1 =
1

2
((9.0−8.53)(17.6−14.27)+(8.5−8.53)(14.3−14.27)+(8.1−8.53)(10.9−14.27)) = 1.50665

We see that this is precisely the covariance of the first and second variables.

Following these patterns, we can generalize what we have observed to find that for 1 ≤ i, j ≤ m:

1. On the diagonal of S, the ith entry, Si,i represents the variance of the ith variable.
2. Within S, Si,j , where i 6= j, represents the covariance between the ith and jth variables.

Thus, our covariance matrix neatly packages all of the variances and covariances between our various
measurements or variables for the given observation vectors.

Note: Our covariance matrix is symmetric.
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Figure 1: 2D plot with no correlation31

Figure 2: 2D plot with negative correlation32

Example 1: The covariance matrix can also
be interpreted visually. Suppose we have a 2D
plot as seen on the left.

Since the data points are scattered all along
the x-axis, we can expect S11 to be very large.
On the other hand, there is a tighter con-
straint on the y-axis. We can expect S22 to
be smaller. We do not know much about the
covariance because there is no correlation be-
tween the two variables. In other words, the
position of the datapoint along its x variable
component does not have much say in the po-
sition of that datapoint along its y compo-
nent.
Let’s look at another example where the data
points appear to be diagonal. In this graph,
the variance in both directions is essentially
equal, S11 = S22, and there is a strong neg-
ative correlation between the two variables.
As the values along the horizontal axis in-
crease, the values for the datapoints along the
vertical axis increase. Thus, S12 = S21 <
0.

Finding Principal Components

Principal components are new variables constructed from linear combinations of the initial vari-
ables in ways that maximize the variance of the data. These combinations compress all the initial
data into a few components on a lower dimension without loss of data. Hence, our principal com-
ponents should be vectors that represent the directions where the data has the greatest variance.

In PCA, we derive our principal components from the covariance matrix of the variables and
sample data. If our covariance matrix is m ×m dimensional, suppose we multiply the covariance
matrix with a random vector v ∈ Rm, basically applying a matrix transformation with our covariance
matrix on some vector. Every time we multiply our vector v by the covariance matrix, v will be
transformed (notably not only scaling but turning/rotating) closer and closer towards a particular
direction. This direction happens to be the direction of greatest variance. The direction of greatest
variance, itself, will not be rotated or knocked off its span, but only scaled. By definition, eigenvectors
are vectors that are only scaled by a matrix transformation or upon multiplication with a matrix.5

Hence, the directions of greatest variance we seek to find are the eigenvectors of the covariance
matrix.

However, we do not want to find any set of eigenvectors. We aim to find an orthogonal set of
eigenvectors. The main idea of PCA is to first find the direction of greatest variance as the first
principal component, before finding the next greatest direction of variance that is independent of
the first.

Let’s revisit the orthogonal decomposition theorem we proved in class5.
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The Orthogonal Decomposition Theorem
Let W be a subspace of Rn. Then each y in Rn can be written uniquely in the form

y = ŷ + z

where ŷ is in W and z is in W⊥. In fact, if {u1, ..., up} is any orthogonal basis of W , then

ŷ =
y · u1
u1 · u1

u1 + . . .+
y · up
up · up

up

and z = y − ŷ.

By the orthogonal decomposition theorem, we see that any vector space, such as Rn, can be
decomposed into a subspace and its orthogonal complement whose bases combine to span the entire
vector space. This means that to find a principal component or eigenvector that is not ”affected”
by the earlier principal components/eigenvectors, we want to find eigenvectors that are not included
in the span of the already-identified eigenvectors. Hence, we want to find eigenvectors that are
orthogonal to each other.

By definition of an orthogonal set5, we thus want to find an orthogonal diagonalization of the
covariance matrix to find an orthogonal set of eigenvectors to be our principal components. By diag-
onalizing the covariance matrix, we can single out the eigenvalues on the diagonal that correspond
to the largest variances in a particular direction. From these, we can obtain eigenvectors that are
most representative of the data while knocking out the smaller variances that do not impact the
data as much.

Orthogonal Diagonalizability of the Covariance Matrix

To understand why we can orthogonally diagonalize any given covariance matrix, let us explore
a few topics in linear algebra.

Symmetric Matrices

By definition, a symmetric matrix is one that is equal to its transpose.5 In other words,

A = AT

where A is some square matrix.
From this, it necessarily follows that A’s main diagonal entries can have any real value, but every

other entry must have a corresponding entry on the opposite side of the main diagonal that it is
equal to.
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Spectral Theorem

The Spectral Theorem for Symmetric Matrices5

An n× n symmetric matrix A has the following properties:
a. A has n real eigenvalues, counting multiplicities
b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a
root of the characteristic equation.
c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to
different eigenvaules are orthogonal.
d. A is orthogonally diagonalizable.

Proposition 1: As proved in class, if A is symmetric, then any two of its eigenvectors that
correspond to distinct eigenvalues (i.e. from different eigenspaces) are orthogonal.

Definition: A square nxn matrix A is orthogonally diagonalizable if there exists an orthog-
onal matrix P (where P−1 = PT =) and a diagonal matrix D such that

A = PDPT = PDP−1

This diagonalization requires n linearly independent and orthonormal eigenvectors. Thus, if we
take matrix A from above and look at its transpose:

AT = (PDPT )T = PTTDTPT = PDPT = A

Since we have proven A = AT , we know that to be orthogonally diagonalizable, A must be
symmetric. Conversely, it follows that all symmetric matrices are orthogonally diagonalizable, as
proved in class.

Furthermore, any symmetric matrix A must have n real eigenvalues. In other words, there exist
real numbers (namely, the eigenvalues) λ1, ..., λn and orthogonal, non-zero real vectors (namely, the
eigenvectors) ~v1, ..., ~vn such that for each eigenvector, we have:

A~v = λ~v

These two properties are part of the Spectral Theorem of Symmetric Matrices.

Going back to the original example, we can orthogonally diagonalize our covariance matrix. We
first calculate the eigenvalues and their corresponding eigenvectors. For very small numbers, it has
been denoted as ±0.000 in this case.

λ1 ≈ 11.4258, Eλ1 ≈


−0.13306
−0.991101
−0.000980053
−0.00370579

 , λ2 ≈ 0.00108935, Eλ2 ≈


0.98425
−0.131792
0.0503993
−0.106498

 ,

λ3 ≈ +0.000, Eλ3 ≈


0.112023
−0.0185375
−0.166435
0.979493

 , λ4 ≈ +0.000, Eλ4 ≈


0.0315725
−0.00262564
−0.984763
−0.170991


The diagonal matrix would be:

S =

8




−0.13306 0.98425 0.112023 0.0315725
−0.991101 −0.131792 −0.0185375 −0.00262564
−0.000980053 0.0503993 −0.0185375 −0.984763
−0.00370579 −0.106498 0.979493 −0.170991




11.4258 0 0 0
0 0.000108935 0 0
0 0 +0.000 0
0 0 0 +0.000



−0.13306 0.98425 0.112023 0.0315725
−0.991101 −0.131792 −0.0185375 −0.00262564
−0.000980053 0.0503993 −0.0185375 −0.984763
−0.00370579 −0.106498 0.979493 −0.170991


−1

The diagonal values are the principal components.

Principle 1

Remark: If A is any mxn matrix, then it follows that AAT and ATA are symmetric and mxm
and nxn respectively.

Thus, proposition 2 follows:
Proposition 2: The matrices AAT and ATA share the same nonzero eigenvalues.

Proof: Suppose ~v is a nonzero eigenvector of ATA (or λ 6= 0). By definition,

(ATA)~v = λ~v.

If we multiply both sides by A, we get:

A(ATA)~v = A(λ~v).

By the associative property of matrix multiplication and scalar multiplication, we can rewrite
this as:

AAT (A~v) = λ(A~v).

By definition, this must mean that the vector represented by A~v is an eigenvector of AAT with
eigenvalue λ. Since eigenvectors by definition cannot be zero, we must check that A~v is nonzero.
However, since we previously defined ~v to be nonzero and λ 6= 0, and from the original equation, we
can conclude that A~v cannot be 0.3 Thus, we have proved that any nonzero eigenvalue λ of ATA is
also an eigenvalue of AAT .

This proposition is very powerful in situations where the number of rows is drastically different
from the number of columns, in which case we can take advantage of this idea. For example, suppose
we have a 600 x 3 matrix A. If we want to find the eigenvalues of AAT , whose dimensions are a
whopping 600 x 600, we can simply look at the eigenvalues of 3 x 3 matrix ATA. Since ATA is
symmetric, we know that it must have 3 real eigenvalues. From this proposition, these 3 eigenvalues
will also belong to AAT , and the remaining 497 eigenvalues of AAT (AAT is also symmetric and
will thus have 600 eigenvalues) will be zero!3,5

By this principle, going back to our example, instead of calculating the eigenvectors and eigen-
values of the original 1

2BB
T matrix, we can find the eigenvalues and eigenvectors of 1

2B
TB which

will be the same nonzero eigenvalues as the original matrix.

R =
1

2
BTB =

1

2

 11.3099393184 0.0858468252 −11.4243641436
0.0858468252 0.0018286481 −0.0882654733
−11.4243641436 −0.0882654733 11.5420016169
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We then order the eigenvalues and their corresponding eigenvectors in non-increasing order. The
next step of PCA involves getting the total variance of the data set.

Remark: The trace of a matrix is equal to the sum of its eigenvalues.
The trace of S is the sum of the diagonal entries of S, otherwise known as the total variance, or

T , of the data.5 This is the sum of the variances of all m variables, or T = λ1 + ...+ λm.
In order to determine how strongly a principle component accounts for variation within the data,

we can simply take its corresponding eigenvalue and divide it by the trace (i.e. total variance). Thus,
in our example, we can obtain the total variance by adding up the eigenvalues of the 4 eigenvectors
as follows:

T = λ1 + λ2 + λ3 + λ4 = 11.426893

Then, to measure how much each principle component influences the total variance, we can di-
vide each corresponding eigenvalue by the total variance:

λ1
T

=
11.4258

11.426893
≈ 0.9999

λ2
T

=
0.000108935

11.426893
≈ 0.0001

λ3
T

=
+0.000

11.426893
≈ +0.000

λ4
T

=
+0.000

11.426893
≈ +0.000

Thus, the first principal component accounts for 99.99% of the total variance, while the second
principal component accounts for 0.01%. The third and fourth principle components account for so
little of the total variance that we can say with confidence that they have little to no impact on the
total variance.

We also ran through this subset exam-
ple in our Google Colab, and we created
this heatmap that shows the weights applied
to each variable for the first three princi-
pal components.6−7,9 From this heatmap, we
can see that the first principal component
is largely determined by percent earning be-
low the poverty level. This means that the
greatest variance among states is in this fac-
tor, followed by percent without health cover-
age.

Dimension Reduction Possibilities

After calculating the eigenvalues and eigenvectors from a given data set, it is typical that the
largest eigenvalues are much larger than the rest. In the example above, the first principal compo-
nents would explain 99% of the total variation in the data. PCA would effectively reduce a data set
in R4 down to R1 represented by the most significant feature.
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The fundamental principles of PCA are as follows:

• The direction of ~u1 in Rm describes a fraction of the total variance, T. It can be written as
λ1

T . The second principal component ~u2 accounts for λ2

T of the total variance.

• The first principal component points in the most significant direction of the data set.

• Next, the second principal component would point in the most significant direction among
directions that are orthogonal to ~u1.

• The third principal component would point in the most significant direction among directions
that are orthogonal to both ~u1 and ~u2, and so forth.

Application to the COVID-19 Pandemic

Now let us move on to applying PCA to examine how various demographic factors across the
states of the United States have affected the cumulative cases and deaths per capita due to COVID-
19.

We imported data from the New York Times COVID-19 Github repository on the number of
COVID-19 cases and deaths over the course of the pandemic.10 We also extracted data from the
U.S. Census Bureau on demographics, housing, employment, and healthcare coverage of populations
residing in each state from 2019 (pre-pandemic).1 With these datasets, we created a 51 × 291 ma-
trix with 51 observation vectors representing the 50 states and Puerto Rico and 291 demographic
factors/preconditions.

In this application, we used both the scikit-learn and numpy approaches to performing PCA on
our dataset. A more specific and thorough run-down and tutorial of how we imported, cleaned,
and applied PCA to our data can be found in our Google Colab. It is highly recommended to read
through the notebook to fully understand our process.

We first compiled all of our data from the US Census Bureau on our various measured variables
into one pandas dataframe, on which we used the PCA package from scikit-learn to determine the
principal components. The composition of the first two principal components can be seen in the
following heatmap, where the vertical axis represents the principal components and the horizontal
axis represents the various initial variables.

When examining the explained variance of
the first two principal components, we found
that just the first principal component accounts
for more than 98 percent of the total variance.
If we take a closer glance at some of the initial
variables that had large weights in the linear
combination forming the first principal compo-
nent, we see that they include the population
with health coverage, for whom poverty status
is determined, and total state population.

After calculating our two principal compo-
nent vectors and seeing that they account for 99.5 percent of the distribution of the data, we can
project our data onto these two principal components as a scatter plot. In order to represent the
varying levels of cases per capita due to COVID-19 and deaths per capita due to COVID-19, we
found the quintiles for cases per capita and deaths per capita among the 51 regions and labeled
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each state {0, 1, 2, 3, 4}, where 0 represents states with the lowest cases or deaths per capita and 4
represents the states with the highest cases or deaths per capita. Both graphs can be seen below.

From the distribution of colors on the graph, we can see that for cases per capita due to COVID-
19, there appears to be clustering of states with higher levels of cases per capita when the first
principal component is positive, while there is no such correlation in the deaths per capita graph.
This may suggest that states with greater amounts of principal component 1 (thus, greater amounts
of its component initial variables including healthcare coverage, poverty status, state population)
experience greater cases per capita of COVID-19. One interpretation for this finding may be that
areas with a greater wealth gap, such as largely populated states with urban areas, have greater
healthcare coverage and a greater population of impoverished people and suffer greater cases per
capita due to the disparity in quality of life and other structural inequalities.

By identifying the principal components and the contributions of each of the initial variables to
the principal components, we can represent the data in a lower-dimensional format that is easier to
analyze and remove any variables that may have just distracted from the real determinants of the
distribution of the data.4 In the context of the COVID-19 pandemic, this type of analysis can help
public officials better target the underlying problems behind the spread and continued reign of the
virus. By identifying what key preconditions and demographic factors contribute to different regions
handling the pandemic differently, researchers can more effectively predict how different countries
and states will respond to future pandemics.

Conclusion

In conclusion, PCA is a powerful dimension reduction tool that enables us to interpret data more
easily by getting rid of redundancies and irrelevant variables while minimizing information loss. Of
course, because of this feature, PCA also has its limitations such as initial independent variables
becoming less interpretable and the necessity for the data to be standardized before PCA. Thus,
PCA is only a preliminary step for most analyses, used in combination with other approaches like
singular value decomposition.4
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Despite these limitations, PCA has proven extremely useful regardless of the countless times it
has been applied in fields that often entail large data sets, such as machine learning, finance, and
bioinformatics. Because these fields tend to have data containing a lot of features that are often
too many to effectively interpret and visualize, PCA can come in handy by compressing this much
information to fewer dimensions while still retaining the most important factors.

In machine learning, for example, it is key that the deep learning program can accurately gen-
eralize inputs beyond what was used in the initial training of the program. However, as the di-
mensionality of the data increases, the ability of the program to decide what datapoints should be
generalized decreases. Using PCA to decrease the dimensionality of training data helps preserve
the ability of the program to accurately generalize data based on a maximal amount of variance.
In finance, the clustering capabilities of PCA are helpful in putting similar stocks into the same
principal component. These clusters allow users to pick one stock from each principal component
and thus better diversify their investments to lower their overall risk. Some bioinformatics appli-
cations of PCA include large epidemiological studies such as our COVID-19 application and large
gene expression pattern analyses.4,7

As our world becomes increasingly data-driven, despite its limitations, PCA is a key dimensionality-
reduction technique that we all should embrace due to its wide applicability and efficacy in many
important fields of study.
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